Hybrid Optimal Theory and Predictive Control for Power Management in Hybrid Electric Vehicle
نویسندگان
چکیده
This paper presents a nonlinear-model based hybrid optimal control technique to compute a suboptimal power-split strategy for power/energy management in a parallel hybrid electric vehicle (PHEV). The power-split strategy is obtained as model predictive control solution to the power management control problem (PMCP) of the PHEV, i.e., to decide upon the power distribution among the internal combustion engine, an electric drive, and other subsystems. A hierarchical control structure of the hybrid vehicle, i.e., supervisory level and local or subsystem level is assumed in this study. The PMCP consists of a dynamical nonlinear model, and a performance index, both of which are formulated for power flows at the supervisory level. The model is described as a bi-modal switched system, consistent with the operating mode of the electric ED. The performance index prescribing the desired behavior penalizes vehicle tracking errors, fuel consumption, and frictional losses, as well as sustaining the battery state of charge (SOC). The power-split strategy is obtained by first creating the embedded optimal control problem (EOCP) from the original bi-modal switched system model with the performance index. Direct collocation is applied to transform the problem into a nonlinear programming problem. A nonlinear predictive control technique (NMPC) in conjunction with a sequential quadratic programming solver is used to compute suboptimal numerical solutions to the PMCP. Methods for approximating the numerical solution to the EOCP with trajectories of the original bi-modal PHEV are also presented in this paper. The usefulness of the approach is illustrated via simulation results on several case studies.
منابع مشابه
استراتژی کنترل پیش بین برای مدیریت توان در خودروی الکتریکی هیبرید موازی
In this paper, a hybrid model-based nonlinear optimal control method is used to compute the optimal power distribution and power management in parallel hybrid electric vehicles. In the power management strategy, for optimal power distribution between the internal combustion engine, electrical system and the other subsystems, nonlinear predictive control is applied. In achieving this goal, a hie...
متن کاملOptimal power management of fuel cell hybrid vehicles
This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...
متن کاملA Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملMulti-objective Optimization of Hybrid Electric Vehicle Equipped with Power-split Continuously Variable Transmission
This paper aims to find the efficient state of hybrid electric vehicle (HEV) by simultaneous optimization of the control strategy and the power train. The power transmission employed in this vehicle is a power-split continuously variable transmission (CVT) which uses several fixed ratio mechanisms. After describing this transmission, the rules of electric assist control strategy are introduced....
متن کاملA New Framework for Advancement of Power Management Strategies in Hybrid Electric Vehicles
Power management strategies play a key role in the design process of hybrid electric vehicles. Electric Assist Control Strategy (EACS) is one of the popular power management strategies for hybrid electric vehicles (HEVs). The present investigation proposes a new framework to advance the EACS. Dynamic Programming method is applied to an HEV model in several drive cycles, and as a result, some op...
متن کاملOptimal Siting and Sizing of Hybrid Energy Systems (PV-WT-CHP) and Electric Vehicle Charging Stations Simultaneously based on Game Theory Approach
This paper proposes a methodology for practical siting and sizing of Hybrid energy systems (HESs) consist of: wind turbine (WT), photovoltaic (PV) and combined heat and power (CHP) units. In this method, the interaction of Plug-in Electric Vehicles (PIEVs) in the electric distribution system is considered. Electric Vehicle are seen to have some negative impacts on electric distribution system p...
متن کامل